
Benchmarking of Web tools

1 Configuration	
Tests have been run on two servers.

Server 1:

• nginx 1.0.6, CT++ module (http://ngx-ctpp.vbart.ru/),
• php-fpm 5.3 + APC (http://php.net/manual/en/book.apc.php) 
• Yii 1.1.8 (http://www.yiiframework.com/) 
• Node.js 0.4.11 (http://nodejs.org/)

Server 2:

• nginx 1.0.6, CT++ module (http://ngx-ctpp.vbart.ru/),
• php-fpm 5.3 + APC 
• Node.js 0.4.11 (http://nodejs.org/) 
• MongoDB 2.0 (http://www.mongodb.org/downloads) 
• Redis 2.2.12 (http://redis.io/) 
• PostgreSQL 9.1 (http://www.postgresql.org/)

1. For CT++, please specify:
• templates_root – a directory where it will load the template

(locally)
• ctpp2_data_buffer 512K

4. In nginx, enable php-fpm for the test site, e.g., /var/www/yii/site
5. Allocate at least 200Mb for APC cache, apc.stat = 0
5. Put Yii one level higher than the test site doc_root. For instance,

/var/www/yii/framework and /var/www/yii/site
6. Similarly to Yii, allocate a directory for node.js scripts. For

instance, /var/www/yii/framework and /var/www/yii/site
7. Using npm under node.js, install the following modules:

• Socket.io (https://github.com/learnboost/socket.io)
• Redis + hiredis
• MongoDB

8. Create a database in PostgreSQL. For testing purposes, you can
use the Root access  

2 Test	 results	
Tools:

1. apache benchmark (ab):
run with -n 5000 -c 100

2. siege:
run with-d0 - r5000 -c100

3. httperf:
run with --hog --wsess 1000,1000,0.01 --rate 50 --timeout 5 --
method GET and --hog --wsess 1000,1000,0.1 --rate 50 --
timeout 5 --method GET

2.1 Comparative	 analysis	 of	 the	 basic	 frameworks	 initialization	 time	
◦ Yii (1.1.8): time to process a minimum request: 27 to 47ms,

avg: 34ms
◦ Symfony (2.0.1): time to process a minimum request: 46 to

92ms, avg: 72ms
◦ ZF (optimized build): time to process a minimum request: 114

to 201ms, avg: 132ms
Conclusion: Yii has a minimal initialization time and shows better
than acceptable response time with requests from cache or small
requests.

2.2 Comparative	 analysis	 of	 the	 basic	 template	 engines	

Template engine CT + +
(2.7.1)

Smarty
(3.10) Twig (1.1.2)

A simple output of 3 variables
single call without a framework 4-5ms 6-7ms 6-7ms
- at the first access 4-5ms 14ms 12ms

Output of table of 1000 rows and 3 columns
at the first access 33ms 112ms 110ms
subsequent accesses 33ms 79ms 82ms

Lebowski benchmark (building of a typical page with a header, left
navigation column, summaries, links to full version, tag cloud and

footer)
single request at the first access 16ms 77ms 82ms
single request at subsequent
accesses 27ms 28ms

under load 27ms 79-101ms 82-104ms
requests per second 1531 1213 1191
memory usage at full load 324Mb 387Mb 372Mb
Impressions from the template engines:

• CT++ - the templates are completely separated from the application.
All the templates are pre-compiled, and you can easily include
the compilation procedure in a deploy script. The language of
templates offers a feature set similar to Smarty. Still, it is
somewhat more cumbersome because of structures like
<TMPL_var total>, <TMPL_if sections>: in Smarty this
corresponds to {$ total}, {if $ sections}

• Smarty 3 is more familiar to users and it has an extended syntax
now. It is easy to use, and it can be integrated into the

framework
• • 	 Twig is similar to a Smarty 3, but it is more concise and user-

friendly in terms of design, and it can be integrated into the
framework

Conclusion: CT++ is the quickest template engine, it uses fewer
resources and better withstands the load. It allows you to completely
separate presentation logic from your application. Also, you will be
able to unify output of your application. Also, an important benefit of
CT++ is that it is agnostic of programming language: you can make
output templates, for instance, for php applications and node.js.	
Twig and Smarty are more familiar to users and perhaps also more
convenient.

2.3 Verifying	 a	 typical	 response	 scenario	
Scenario:

1. Receive HTTP GET request from a client
2. Send it to Yii for execution
3. Select the required blocks from the cache
4. Provide CT++
5. Return the result to the client

	
Tools:

apache benchmark (ab): run with -n 5000 -c 100

• data selection in one query to the cache: full time of the request -
14ms, under load - 66ms

• blockwise data selection and merger into a final json (5 blocks):
14ms, under load - 72ms, 1222 requests/s

• blockwise data selection and merger into a final json (45 blocks):
14ms, under load - 79ms, 1151 requests/s

Conclusion: The testing results show that for a typical page structure,
page build time does not exceed 80ms, if all the data needed is in
cache. Such a system is potentially capable of processing 1200
requests per second or 4.3 million per hour, so you can avoid HTML
caching and focus on data caching.

2.4 Testing	 of	 fault-‐tolerance	 of	 mongodb	 replica	 set	
Scenario:

For the test, 3 mongodb instances were launched:

• /data/service/mongodb/bin/mongod --rest --replSet ntv --port
27017 --dbpath /data/r0 

• /data/service/mongodb/bin/mongod --replSet ntv --port 27018 --
dbpath /data/r1 

• /data/service/mongodb/bin/mongod --replSet ntv --port 27019 --
dbpath /data/r2  

After configuring a replica, ports 27017 and 27019 were sequentially
disconnected. After each mongodb instance disconnection, we checked
the status of remaining servers and their availability to PHP. The
status of the master instance was promptly changing, and the data
retrieved from the database was up-to-date.     After the master
database failure, the client is automatically connected to a new master
in the replica set. Here is a full connect string:

$ M = new Mongo ("mongodb: / /
193.232.148.35:27017,193.232.148.35:27018,193.232.148.35:27
019", array ("replicaSet" => true));

With such a connect string, server failure on ports 27017 or 27019 has
no effect on the client operation.

The following connect string is also possible:

(master - 193.232.148.35:27018):

$m = new Mongo("mongodb://193.232.148.35:27017",
array("replicaSet" => true));

In such a case, the system automatically connects to the master
instance (detected automatically), but in case 193.232.148.35:27017
is disconnected, the "Transport endpoint is not connected" error is
thrown on reconnect.

Here are the cons of the solution:

1. Oplog puts a limitation on the collection size, so if the master
instance has been down for a long time, it will not be able to
synchronize on its own as older oplog collection records could be
replaced by the newer records. This is not actually an issue, as
there is a synchronization command, which does not rely on
oplog and enables load balancing. So, just run {resync:1}
command on the slave or run the slave with the --autoresync
key.

2. At manual shutdown of one of the instances, the lag of php
drivers is observed and the "couldn't send command" error
occurs. However, after reloading the page, it disappears. In this

case, if you shut down the instance and restart php-fpm, the
error does not occur at all. Apparently, the error occurs as a
consequence of caching of the master server PHP address.
Connect to the replica via a Mongo console is completely
transparent, so you would not notice instance failure. Perhaps
this behavior is a consequence of mongodb instance separation
by ports rather than hosts. Still, in the current configuration,
verifying of this is not realistic.

2.5 Testing	 mongodb	
1. Insert of 10,000,000 records of Array ([_id] => MongoId Object

([$id] => 4e8d2fe42b6ac6d41b0000a3) [i] => 163 [status] =>
1 [x] => 8973 [y] => 20433) individually - 392 sec

2. Insert of 10,000,000 records of Array ([_id] => MongoId Object
([$id] => 4e8d2fe42b6ac6d41b0000a3) [i] => 163 [status] =>
1 [x] => 8973 [y] => 20433) in blocks of 10,000 records - 392
sec

3. Update of all records in the collection with an increment of "y" to
1 - 927 sec

4. At the time of the update, 10 records are inserted independently
to the same collection. As a result of the test, the data was saved
successfully, and the counters were updated

5. Selection at the time of the update: out of 3 attempts 2 attempts
were successful, and one has failed due to a timeout.

	

